Purification and biochemical characterization of Arabian balsam α-amylase and enhancing the retention and reusability via encapsulation onto calcium alginate/Fe2O3 nanocomposite beads.

In this study, Arabian balsam α-amylase was purified using the three-step purification method with 9.8-fold purification and 7% recovery. The purified α-amylase's molecular weight was 85 kDa. Calcium alginate incorporated with iron (III) oxide nanoparticles was applied as an immobilizing support for α-amylase. The immobilized α-amylase was characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis, and scanning electron microscopy. In addition, the optimum conditions for immobilization efficiency, immobilization time, reusability, kinetic parameters, and the effect of pH for the immobilization process were examined. After storage, about 87% of the initial activity was maintained at 4 °C for 60 days. The immobilized enzyme exhibited enhanced stability compared to the soluble enzyme in relation to pH and temperature. The immobilized enzyme provided the following kinetic variables: 0.455 mg/mL, 4050 s-1, 28.57 μmol maltose/mL, and 8900 s-1 mg-1 mL for Km, kcat, Vmax, and kcat/Km, respectively, compared with 1.798 mg/mL, 5980 s-1, 42.19 μmol maltose/mL, and 3326 s-1 mg-1 mL for the soluble enzyme. The total phenolic contents of the soluble and immobilized α-amylase-treated wheat kernels were increased by 1.26 and 1.31 fold, respectively. Purified α-amylase from Arabian balsam can thus be successfully used to enhance the antioxidant capacity of cereals. PMID: 32464199 [PubMed - as supplied by publisher]
Source: International Journal of Biological Macromolecules - Category: Biochemistry Authors: Tags: Int J Biol Macromol Source Type: research