Biomechanical Behavior of Bioactive Material in Dental Implant: A Three-Dimensional Finite Element Analysis.

In this study, the FEA model of the bones and the tissues are modeled as homogeneous, isotropic, and linearly elastic material with a titanium implant system with an assumption of it 100% osseointegrated into the bone. The titanium was functionalized with graphene and graphene oxide. A modeling software tool Catia® and Ansys Workbench® is used to perform the analysis and evaluate the von Mises stress distribution, strain, and deformation at the implant and implant-cortical bone interface. The results showed that the titanium implant with a surface coating of graphene oxide exhibited better mechanical behavior than graphene, with mean von Mises stress of 39.64 MPa in pitch 1, 23.65 MPa in pitch 2, and 37.23 MPa in pitch 3. It also revealed that functionalizing the titanium implant will help in reducing the stress at the implant system. Overall, the study emphasizes the use of FEA analysis methods in solving various biomechanical issues about medical and dental devices, which can further open up for invivo study and their practical uses. PMID: 32454799 [PubMed - in process]
Source: The Scientific World Journal - Category: Science Tags: ScientificWorldJournal Source Type: research