Detection of Intestinal Protozoa in Trichrome-Stained Stool Specimens by Use of a Deep Convolutional Neural Network [Parasitology]

Intestinal protozoa are responsible for relatively few infections in the developed world, but the testing volume is disproportionately high. Manual light microscopy of stool remains the gold standard but can be insensitive, time-consuming, and difficult to maintain competency. Artificial intelligence and digital slide scanning show promise for revolutionizing the clinical parasitology laboratory by augmenting the detection of parasites and slide interpretation using a convolutional neural network (CNN) model. The goal of this study was to develop a sensitive model that could screen out negative trichrome slides, while flagging potential parasites for manual confirmation. Conventional protozoa were trained as "classes" in a deep CNN. Between 1,394 and 23,566 exemplars per class were used for training, based on specimen availability, from a minimum of 10 unique slides per class. Scanning was performed using a 40x dry lens objective automated slide scanner. Data labeling was performed using a proprietary Web interface. Clinical validation of the model was performed using 10 unique positive slides per class and 125 negative slides. Accuracy was calculated as slide-level agreement (e.g., parasite present or absent) with microscopy. Positive agreement was 98.88% (95% confidence interval [CI], 93.76% to 99.98%), and negative agreement was 98.11% (95% CI, 93.35% to 99.77%). The model showed excellent reproducibility using slides containing multiple classes, a single class, or no para...
Source: Journal of Clinical Microbiology - Category: Microbiology Authors: Tags: Parasitology Source Type: research