Identification of the putative N-acetylglucosaminidase CseA associated with daughter cell separation in Tetragenococcus halophilus.

Identification of the putative N-acetylglucosaminidase CseA associated with daughter cell separation in Tetragenococcus halophilus. Biosci Biotechnol Biochem. 2020 May 24;:1-12 Authors: Shirakawa D, Wakinaka T, Watanabe J Abstract The lactic acid bacterium Tetragenococcus halophilus, which is used as a starter to brew soy sauce, comprises both cluster-forming strains and dispersed strains. The cluster-forming strains are industrially useful for obtaining clear soy sauce, because the cell clusters are trapped by filter cloth when the soy sauce mash is pressed. However, the molecular mechanism underlying cell cluster formation is unknown. Whole genome sequence analysis and subsequent target sequence analysis revealed that the cluster-forming strains commonly have functional defects in N-acetylglucosaminidase CseA, a peptidoglycan hydrolase. CseA is a multimodular protein that harbors a GH73 domain and six peptidoglycan-binding LysM domains. Recombinant CseA hydrolyzed peptidoglycan and promoted cell separation. Functional analysis of truncated CseA derivatives revealed that the LysM domains play an important role in efficient peptidoglycan degradation and cell separation. Taken together, the results of this study identify CseA as a factor that greatly affects the cluster formation in T. halophilus. PMID: 32448081 [PubMed - as supplied by publisher]
Source: Bioscience, Biotechnology, and Biochemistry - Category: Biochemistry Authors: Tags: Biosci Biotechnol Biochem Source Type: research