Proteomic analysis of liver proteins of mice exposed to 1,2-dichloropropane.

Proteomic analysis of liver proteins of mice exposed to 1,2-dichloropropane. Arch Toxicol. 2020 May 20;: Authors: Zhang X, Morikawa K, Mori Y, Zong C, Zhang L, Garner E, Huang C, Wu W, Chang J, Nagashima D, Sakurai T, Ichihara S, Oikawa S, Ichihara G Abstract 1,2-Dichloropropane (1,2-DCP) is recognized as the causative agent for cholangiocarcinoma among offset color proof-printing workers in Japan. The aim of the present study was to characterize the molecular mechanisms of 1,2-DCP-induced hepatotoxic effects by proteomic analysis. We analyzed quantitatively the differential expression of proteins in the mouse liver and investigated the role of P450 in mediating the effects of 1,2-DCP. Male C57BL/6JJcl mice were exposed to 0, 50, 250, or 1250 ppm 1,2-DCP and treated with either 1-aminobenzotriazole (1-ABT), a nonselective P450 inhibitor, or saline, for 8 h/day for 4 weeks. Two-dimensional difference in gel electrophoresis (2D-DIGE) combined with matrix-assisted laser-desorption ionization time-of-flight mass spectrometry (MALDI-TOF/TOF/MS) was used to detect and identify proteins affected by the treatment. PANTHER overrepresentation test on the identified proteins was conducted. 2D-DIGE detected 61 spots with significantly different intensity between 0 and 250 ppm 1,2-DCP groups. Among them, 25 spots were identified by MALDI-TOF/TOF/MS. Linear regression analysis showed significant trend with 1,2-DCP level in 17 proteins in mice ...
Source: Archives of Toxicology - Category: Toxicology Authors: Tags: Arch Toxicol Source Type: research