Structural basis of the interplay between {alpha}-synuclein and Tau in regulating pathological amyloid aggregation [Protein Structure and Folding]

Amyloid aggregation of pathological proteins is closely associated with a variety of neurodegenerative diseases, and α-synuclein (α-syn) deposition and Tau tangles are considered hallmarks of Parkinson's disease and Alzheimer's disease, respectively. Intriguingly, α-syn and Tau have been found to co-deposit in the brains of individuals with dementia and parkinsonism, suggesting a potential role of cross-talk between these two proteins in neurodegenerative pathologies. Here we show that monomeric α-syn and the two variants of Tau, Tau23 and K19, synergistically promote amyloid fibrillation, leading to their co-aggregation in vitro. NMR spectroscopy experiments revealed that α-syn uses its highly negatively charged C terminus to directly interact with Tau23 and K19. Deletion of the C terminus effectively abolished its binding to Tau23 and K19 as well as its synergistic effect on promoting their fibrillation. Moreover, an S129D substitution of α-syn, mimicking C-terminal phosphorylation of Ser129 in α-syn, which is commonly observed in the brains of Parkinson's disease patients with elevated α-syn phosphorylation levels, significantly enhanced the activity of α-syn in facilitating Tau23 and K19 aggregation. These results reveal the molecular basis underlying the direct interaction between α-syn and Tau. We proposed that this interplay might contribute to pathological aggregation of α-syn and Tau in neurodegenerative diseases.
Source: Journal of Biological Chemistry - Category: Chemistry Authors: Tags: Molecular Biophysics Source Type: research