GCNCDA: A new method for predicting circRNA-disease associations based on Graph Convolutional Network Algorithm

In this study, we propose a computational method called GCNCDA based on the deep learning Fast learning with Graph Convolutional Networks (FastGCN) algorithm to predict the potential disease-associated circRNAs. Specifically, the method first forms the unified descriptor by fu sing disease semantic similarity information, disease and circRNA Gaussian Interaction Profile (GIP) kernel similarity information based on known circRNA-disease associations. The FastGCN algorithm is then used to objectively extract the high-level features contained in the fusion descriptor. Finall y, the new circRNA-disease associations are accurately predicted by the Forest by Penalizing Attributes (Forest PA) classifier. The 5-fold cross-validation experiment of GCNCDA achieved 91.2% accuracy with 92.78% sensitivity at the AUC of 90.90% on circR2Disease benchmark dataset. In comparison with different classifier models, feature extraction models and other state-of-the-art methods, GCNCDA shows strong competitiveness. Furthermore, we conducted case study experiments on diseases including breast cancer, glioma and colorectal cancer. The results showed that 16, 15 and 17 of the top 20 can didate circRNAs with the highest prediction scores were respectively confirmed by relevant literature and databases. These results suggest that GCNCDA can effectively predict potential circRNA-disease associations and provide highly credible candidates for biological experiments.
Source: PLoS Computational Biology - Category: Biology Authors: Source Type: research