Early Intervention of Gastrodin Improved Motor Learning in Diabetic Rats Through Ameliorating Vascular Dysfunction.

Early Intervention of Gastrodin Improved Motor Learning in Diabetic Rats Through Ameliorating Vascular Dysfunction. Neurochem Res. 2020 May 15;: Authors: Zhang F, Deng CK, Huang YJ, Miao YH, Wang YY, Zhang Y, Qian ZY, Zhang WQ, Zhou RD, Lei B, Shen X, Wu XY, Cui G, Song JL, Mu ZH, Zou YY Abstract The mechanism of cognitive dysfunction in diabetes is still unclear. Recently, studies have shown that the cerebellum is involved in cognition. Furthermore, diabetes-induced cerebellar alterations is related to vascular changes. Therefore, we aimed to explore the roles of vascular function in diabetes-induced cerebellar damage and motor learning deficits. Type 1 diabetes was induced by a single injection of streptozotocin in Sprague-Dawley rats. Motor learning was assessed by beam walk test and beam balance test. The pathological changes of the cerebellum were assessed by Hematoxylin and eosin staining and Nissl staining. Apoptosis was evaluated by anti-caspase-3 immunostaining. Protein expression was evaluated by western blotting and double immunofluorescence. Our results have shown that motor learning was impaired in diabetic rats, coupled with damaged Purkinje cells and decreased capillary density in the cerebellum. In addition, the protein expression of neuronal NOS, inducible NOS, endothelial NOS, total nitric oxide, vascular endothelial growth factor and its cognate receptor Flk-1 was decreased in the cerebellum. Gastrodin treatment am...
Source: Neurochemical Research - Category: Neuroscience Authors: Tags: Neurochem Res Source Type: research