Time-Dependent Memory and Gait Improvement by Intranasally-Administered Extracellular Vesicles in Parkinson's Disease Model Rats.

Time-Dependent Memory and Gait Improvement by Intranasally-Administered Extracellular Vesicles in Parkinson's Disease Model Rats. Cell Mol Neurobiol. 2020 May 14;: Authors: Narbute K, Pilipenko V, Pupure J, Klinovičs T, Auders J, Jonavičė U, Kriaučiūnaitė K, Pivoriūnas A, Kluša V Abstract We have recently demonstrated that extracellular vesicles (EVs) derived from the human teeth stem cells improve motor symptoms and normalize tyrosine hydroxylase (TH) expression in the nigrostriatal structures of Parkinson's disease (PD) model rats obtained by 6-hydroxydopamine (6-OHDA) unilateral injection into the medial forebrain bundle (MFB). The aim of this study was to clarify: (1) how long therapeutic effects persist after discontinuation of 17-day intranasal administration of EVs in 6-OHDA rats; (2) may EVs reverse cognitive (learning/memory) dysfunction in these PD model rats; (3) whether and how the behavioral improvement may be related to the expression of TH and Nissl bodies count in the nigrostriatal structures. Our results demonstrated that in 6-OHDA rats, gait was normalized even ten days after discontinuation of EVs administration. EVs successfully reversed 6-OHDA-induced impairment in spatial learning/memory performance; however, the beneficial effect was shorter (up to post-treatment day 6) than that revealed for gait improvement. The shorter effect of EVs coincided with both full normalization of TH expression and Nissl bo...
Source: Cellular and Molecular Neurobiology - Category: Cytology Authors: Tags: Cell Mol Neurobiol Source Type: research