Early Life Epigenetic Changes can Set the Stage for Later Life Metabolic Dysfunction

Epigenetic markers on DNA determine the pace and timing of protein production, and are thus one of the important influences on cell and tissue function. Cells adjust their epigenetic programs in response to the surrounding environment, but alterations can be lasting. It is thought that environmental influences on epigenetic programming of cellular behavior that occur in childhood set the stage for faster or slower onset of metabolic dysfunction in later life, once cell and tissue damage starts to accumulate. Researchers here provide a proof of principle of this process in rats. Environmental exposures during early life exert a profound influence on developing organs, which can affect health across the life-course, and even transgenerationally. The adverse health impact of these exposures is thought to be mediated by reprogramming of normal physiologic responses, and forms the basis of the developmental origins of health and disease (DOHaD) paradigm. Fetal over- or under-nutrition has been linked to metabolic dysfunction in adulthood and increased risk for metabolic diseases including obesity, diabetes, and metabolic syndrome. Besides nutritional stressors, early-life exposures to environmental chemicals, including endocrine-disrupting chemicals (EDCs), can influence health and disease susceptibility across the life-course. EDCs are defined as exogenous chemicals, or mixture of chemicals, that interfere with hormone action and many have been shown to impact met...
Source: Fight Aging! - Category: Research Authors: Tags: Daily News Source Type: blogs