Electronegative LDL Induces M1 Polarization of Human Macrophages Through a LOX-1-Dependent Pathway

In this study, we examined the effects of LDL(−) on macrophage polarization and the involvement of lectin-like oxidized LDL receptor-1 (LOX-1) in this process. THP-1 macrophages were treated with native LDL (nLDL) or LDL(−), and then the expression of M1/M2-related surface markers and cytokines were evaluated. The results show that treatment with LDL(−) resulted in pro found increase in proinflammatory cytokines, IL-1β, IL-6, and TNF-α, and M1-surface marker CD86; however, M2-related cytokines, IL-10 and TGF-β, and M2-surface marker CD206 were not changed by LDL(−). Untreated or nLDL-treated cells were used as control. LDL(−)-induced M1 polarization and sec retion of proinflammatory cytokines were diminished in LOX-1 knockdown cells. Taken together, the results show that LDL(−) promotes differentiation of human monocytes to M1 macrophages through a LOX-1-dependent pathway, and explore the contribution of LDL(−) and LOX-1 to the development of chron ic inflammation in atherosclerosis.
Source: Inflammation - Category: Allergy & Immunology Source Type: research