Poly-phosphate increases SMC differentiation of mesenchymal stem cells on PLGA –polyurethane nanofibrous scaffold

AbstractThe use of bioactive scaffolds in tissue engineering has a significant effect on the damaged tissue healing by an increase in speed and quality of the process. Herein, electrospinning was applied to fabricate composite nanofibrous scaffolds by Poly lactic-co-glycolic acid (PLGA) and Polyurethane (PU) with and without poly-phosphate (poly-P). Scaffolds were characterized morphologically by scanning electron microscope (SEM), and their biocompatibility was also investigated by SEM, protein adsorption, cell attachment and survival assays. The applicability of the scaffolds for bladder tissue engineering was also evaluated by culturing mesenchymal stem cells (MSCs) on the scaffolds and their differentiation into smooth muscle cell (SMC) was studied at the gene and protein levels. The results demonstrated that scaffold biocompatibility was increased significantly by loading poly-P. SMC related gene and protein expression level in MSCs cultured on poly-P-loaded scaffold was also increased significantly compared to those cells cultured on empty scaffold. It can be concluded that poly-P hasn ’t also increased scaffold biocompatibility, but also SMC differentiation potential of MSCs was also increased while cultured on the poly-P containing scaffold compared to the empty scaffold. Taken together, our study showed that PLGA–PU–poly-P alone and in combination with MSCs has a promisin g potential for support urinary bladder smooth muscle tissue engineering.
Source: Cell and Tissue Banking - Category: Stem Cells Source Type: research