Peptide Hydrogels for Rate-Controlled Delivery of Therapeutics

Hydrogels represent an attractive controlled drug-delivery system that have been used in various clinical applications, such as: tissue engineering for wound healing, surgical procedures, pain management, cardiology, and oncology. High-water content of hydrogels confers tissue-like physical properties and the crosslinked fibrillar network enables encapsulation of labile small molecule drugs, peptides, proteins, nucleic acids, proteins, nanoparticles, or cells. The porosity of the mesh-like network contributes to enhanced protection and controlled release of therapeutics compared with the rapid clearance and degradation of some proteins observed using conventional drug-delivery methods. Although all hydrogel platforms provide spatial and temporal control over the release of therapeutics, the current standard requires designing a unique hydrogel for a select therapeutic agent for a specific application. This one therapeutic agent-one gel model adds significant research and regulatory burden.To address this, researchers at the National Cancer Institute (NCI) developed a novel syringe-injectable/sprayable hydrogel platform that can deliver a variety of different therapeutic agents. This hydrogel can be used to deliver small molecules, peptides, proteins, nucleic acids, nanoparticles, or cells.   Further, this hydrogel has been engineered to be compatible with a protein delivery platform invented at the NCI. This tunable combination system enables the release of different kinds o...
Source: NIH OTT Licensing Opportunities - Category: Research Authors: Source Type: research