Selective chromatid segregation mechanism for Bruchus wings piebald color.

Selective chromatid segregation mechanism for Bruchus wings piebald color. Front Biosci (Elite Ed). 2015;7:322-33 Authors: Klar AJ Abstract The mechanisms of asymmetric organ development have been under intensive investigation for years, yet the proposed mechanisms remain controversial (1-3). The female Bruchus quadrimaculatus beetle insect develops two black-colored spots bilaterally located on each upper elytra wing by an unknown mechanism. Fifty percent of the P (for piebald, two colors) gene homozygous mutant insects, described in 1925, had a normal left elytrum (with two black spots) and an abnormal right elytrum (with two red spots) and the balance supported the converse lateralized pigment arrangement (4). Rather than supporting the conventional morphogen model for the wings pigmentation development, their biological origin is explained here with the somatic strand-specific epigenetic imprinting and selective sister chromatid segregation (SSIS) mechanism (5). We propose that the P gene product performs the selective sister chromatid segregation function to produce symmetric cell division of a specific cell during embryogenesis to result in the bilateral symmetric development of elytra black color spots and that the altered chromatid segregation pattern of the mutant causes asymmetric cell division to confer the piebald phenotype.  PMID: 25553380 [PubMed - in process]
Source: Frontiers in Bioscience - Elite - Category: Biomedical Science Tags: Front Biosci (Elite Ed) Source Type: research