Sleep and Neuroimaging

AbstractWe spend about one-third of our lives either sleeping or attempting to sleep. Therefore, the socioeconomic implications of sleep disorders may be higher than expected. However, the fundamental mechanisms and functions of sleep are not yet fully understood. Neuroimaging has been utilized to reveal the connectivity between sleep and the brain, which is associated with the physiology of sleep. Positron emission tomography (PET) and single-photon emission computed tomography (SPECT) imaging studies have become increasingly common in sleep research. Recently, significant progress has been made in understanding the physiology of sleep through neuroimaging and the use of various radiopharmaceuticals, as the sleep –wake cycle is regulated by multiple neurotransmitters, including dopamine, adenosine, glutamate, and others. In addition, the characteristics of rapid eye and non-rapid eye movement sleep have been investigated by measuring cerebral glucose metabolism. The physiology of sleep has been investigate d using PET to study glymphatic function as a means to clear the amyloid burden. However, the basic mechanisms and functions of sleep are not yet fully understood. Further studies are needed to investigate the effects and consequences of chronic sleep deprivation, and the relevance of sleep to other diseases.
Source: Nuclear Medicine and Molecular Imaging - Category: Nuclear Medicine Source Type: research