Adiponectin peptide alleviates oxidative stress and NLRP3 inflammasome activation after cerebral ischemia-reperfusion injury by regulating AMPK/GSK-3 β.

Adiponectin peptide alleviates oxidative stress and NLRP3 inflammasome activation after cerebral ischemia-reperfusion injury by regulating AMPK/GSK-3β. Exp Neurol. 2020 Apr 07;:113302 Authors: Liu H, Wu X, Luo J, Zhao L, Li X, Guo H, Bai H, Cui W, Guo W, Feng D, Qu Y Abstract The effects of current treatment strategies for ischemic stroke are weakened by ischemia-reperfusion (I/R) injury. Effective treatments targeting I/R injury are still insufficient. Adiponectin (APN), a fat-derived hormone, has a wide range of antioxidative and anti-inflammatory effects. However, the application of APN to the central nervous system is restricted by its limited blood-brain barrier permeability. Therefore, an adiponectin peptide (APNp) was chemically synthesized on the basis of the functional area in the APN structure. The present study was carried out to explore the effect and the underlying mechanism of APNp on I/R injury. A transient middle cerebral artery occlusion (tMCAO) model with C57BL/6 J mice was used, and an in vitro oxygen-glucose deprivation and reintroduction (OGD-R) model with primary astrocytes was induced. The results showed that APNp decreased the cerebral infarction volume, alleviated brain edema, improved neurological function and had antioxidative, anti-inflammatory, and antiapoptotic effects against cerebral I/R injury. In addition, APNp upregulated the phosphorylation of AMPK and GSK-3β, promoted the nuclear translocation...
Source: Experimental Neurology - Category: Neurology Authors: Tags: Exp Neurol Source Type: research