Development and production of nanobodies specifically against green fluorescence protein.

In this study, an alpaca was immunized with purified green fluorescence protein (GFP) and a VHH library from lymphocytes of the immunized alpaca was constructed with a capacity of 6.7 × 107. The library was biopanned against GFP by phage display technique and four unique DNA sequences coding for anti-GFP nanobodies were identified by enzyme-linked immunosorbent assay, named a12, e6, d5, and b9. The four DNA sequences were then cloned into pADL-10b-6×His or pBAD24-Flag-6×His for expression in bacteria. Purified A12, E6, D5, and B9 were demonstrated to bind GFP specifically both in vitro by enzyme-linked immunosorbent assay and native-PAGE analysis and in vivo by immunofluorescence and immunoprecipitation. Taken together, our results demonstrate that anti-GFP nanobodies are successfully selected from the immune library, are produced in bacteria, and are available for basic research.Key Points• Four different GFP binders were successfully obtained from an immune VHH library.• The four GFP binders were successfully purified from bacteria. • Purified GFP binders can bind GFP both in vitro and in vivo and are ready for use in basic research. PMID: 32270250 [PubMed - as supplied by publisher]
Source: Applied Microbiology and Biotechnology - Category: Microbiology Authors: Tags: Appl Microbiol Biotechnol Source Type: research