Mathematical modelling of COVID-19 transmission and mitigation strategies in the population of Ontario, Canada.

We present medians and credible intervals from 100 replicates per scenario using a 2-year time horizon. RESULTS: We estimated that 56% (95% credible interval 42%-63%) of the Ontario population would be infected over the course of the epidemic in the base case. At the epidemic peak, we projected 107 000 (95% credible interval 60 760-149 000) cases in hospital (non-ICU) and 55 500 (95% credible interval 32 700-75 200) cases in ICU. For fixed-duration scenarios, all interventions were projected to delay and reduce the height of the epidemic peak relative to the base case, with restrictive physical distancing estimated to have the greatest effect. Longer duration interventions were more effective. Dynamic interventions were projected to reduce the proportion of the population infected at the end of the 2-year period and could reduce the median number of cases in ICU below current estimates of Ontario's ICU capacity. INTERPRETATION: Without substantial physical distancing or a combination of moderate physical distancing with enhanced case finding, we project that ICU resources would be overwhelmed. Dynamic physical distancing could maintain health-system capacity and also allow periodic psychological andeconomic respite for populations. PMID: 32269018 [PubMed - as supplied by publisher]
Source: cmaj - Category: General Medicine Authors: Tags: CMAJ Source Type: research