Molecular genetics of human hypertension

Purpose of review Genetic variance on blood pressure was shown about 100 years ago; a Mendelian inheritance was initially presumed. Platt and Pickering conducted a lively debate, whether blood pressure was inherited in a Mendelian fashion or whether the condition was polygenic. Genetic-hypertension research has appropriately followed both pathways. Recent findings Genome-wide association studies, Pickering model, have identified more than 500 blood-pressure loci, the targets of which are waiting to be evaluated. Then, come the ‘dark-horses’ of hypertension, namely ‘secondary’ causes. These conditions have been remarkably elucidative including pheochromocytoma, primary aldosteronism, Cushing's syndrome, and even renovascular hypertension. All these conditions feature genetic causes. Finally, arrive the Platt followers. A plethora of Mendelian conditions located within the kidney are established. These syndromes involve increased sodium (as chloride) absorption in the distal nephron. Finally, nonsalt-dependent Mendelian forms involving the vascular directly have been described. Mechanistically, Mendelian forms have large effects on blood pressure and offer effective treatment targets. Summary Which genetic models will bring us improved therapies? Ongoing studies will answer that question. It behooves the clinician to follow this dynamic area of research.
Source: Current Opinion in Cardiology - Category: Cardiology Tags: MOLECULAR GENETICS: Edited by Ali J. Marian Source Type: research