GABAergic and non-GABAergic subpopulations of Kv3.1b-expressing neurons in macaque V2 and MT: laminar distributions and proportion of total neuronal population

AbstractThe Kv3.1b potassium channel subunit, which facilitates the fast-spiking phenotype characteristic of parvalbumin (PV)-expressing inhibitory interneurons, is also expressed by subpopulations of excitatory neurons in macaque cortex. We have previously shown that V1 neurons expressing Kv3.1b but not PV or GABA were largely concentrated within layers 4C α and 4B of V1, suggesting laminar or pathway specificity. In the current study, the distribution and pattern of co-immunoreactivity of GABA, PV, and Kv3.1b across layers in extrastriate cortical areas V2 and MT of the macaque monkey were measured using the same triple immunofluorescence labeling, confocal microscopy, and partially automated cell-counting strategies used in V1. For comparison, densities of the overall cell and neuronal populations were also measured for each layer of V2 and MT using tissue sections immunofluorescence labeled for the pan-neuronal marker NeuN. GABAergic neurons accounted for 14% of the total neuronal population in V2 and 25% in MT. Neurons expressing Kv3.1b but neither GABA nor PV were present in both areas. This subpopulation was most prevalent in the lowest subcompartment of layer 3, comprising 5% of the total neuronal population in layer 3C of both are as, and 41% and 36% of all Kv3.1b+ neurons in this layer in V2 and MT, respectively. The prevalence and laminar distribution of this subpopulation were remarkably consistent between V2 and MT and showed a striking similarity to the pattern...
Source: Anatomy and Embryology - Category: Anatomy Source Type: research