Could pharmacological curtailment of the RhoA/Rho-kinase pathway reverse the endothelial barrier dysfunction associated with Ebola virus infection?

Publication date: February 2015 Source:Antiviral Research, Volume 114 Author(s): Shahram Eisa-Beygi , Xiao-Yan Wen Activation of the RhoA/Rho-kinase (ROCK) pathway induces endothelial barrier dysfunction and increased vascular permeability, which is a hallmark of various life-threatening vascular pathologies. Therapeutic approaches aimed at inhibiting the RhoA/ROCK pathway have proven effective in the attenuation of vascular leakage observed in animal models of endotoxin-induced lung injury/sepsis, edema, autoimmune disorders, and stroke. These findings suggest that treatments targeting the ROCK pathway might be of benefit in the management of the Ebola virus disease (EVD), which is characterized by severe vascular leak, likely involving pro-inflammatory cytokines, such as tumor necrosis factor-alpha, released from virus-infected macrophages. In this paper, we review evidence from in vivo and in vitro models of vascular leakage, suggesting that the RhoA/ROCK pathway is an important therapeutic target for the reversal of the vascular permeability defects associated with EVD. Future studies should explore the efficacy of pharmacological inhibition of RhoA/ROCK pathway on reversing the endothelial barrier dysfunction in animal models of EVD and other hemorrhagic fever virus infections as part of an adjunctive therapy. Such experimental studies should focus, in particular, on the small molecule fasudil (HA-1077), a derivative of isoquinoline, which is a safe and clinically ...
Source: Antiviral Therapy - Category: Virology Source Type: research