Thiosemicarbazone nano-formulation for the control of Aspergillus flavus.

In this study, nanoparticles were obtained by using poly-(ε-caprolactone), a polyester chosen for its biocompatibility and biodegradability properties. Poly-(ε-caprolactone) nanoparticles were formulated by using poly(vinyl alcohol) or Pluronic® F127 as non-ionic surfactants, and then loaded with benzophenone or valerophenone thiosemicarbazone, two compounds that inhibit aflatoxin production by Aspergillus flavus. The different types of nanoparticles were compared in terms of size, polydispersity index, morphology, and drug loading capacity. Finally, their effects were investigated on growth, development, and aflatoxin production in the aflatoxigenic species Aspergillus flavus, a ubiquitous contaminant of maize, cereal crops, and derived commodities. Aflatoxin production was inhibited to various extents, but the best inhibitory effect was obtained with respect to sclerotia production that was most effectively suppressed by both benzophenone and valerophenone thiosemicarbazone-loaded nanoparticles. These data support the idea that it is possible to use such nanoparticles as an alternate to pesticides for the control of mycotoxigenic sclerotia-forming fungi. PMID: 32239408 [PubMed - as supplied by publisher]
Source: Environmental Science and Pollution Research International - Category: Environmental Health Authors: Tags: Environ Sci Pollut Res Int Source Type: research