Fight Aging! Newsletter, March 30th 2020

This study, for the first time, shows that transplantation of non-autologous mitochondria from healthy skeletal muscle cells into normal cardiomyocytes leads to short-term improvement of bioenergetics indicating "supercharged" state. However, over time these improved effects disappear, which suggests transplantation of mitochondria may have a potential application in settings where there is an acute stress. Outlining Some of the Science Behind Partial Reprogramming at Turn.bio https://www.fightaging.org/archives/2020/03/outlining-some-of-the-science-behind-partial-reprogramming-at-turn-bio/ Turn.bio is an early venture in the new field of in vivo cellular reprogramming, though it is unclear as to whether the partial reprogramming approach they are taking will eventually be used directly in patients, versus in cell cultures prior to transplantation for cell therapy. The publicity materials here cover some of the work undertaken by one of the scientific founders of Turn.bio in recent years, including the transplantation of partially reprogrammed muscle cells into old mice to restore muscle function. Cells can be reprogrammed into pluripotent stem cells via expression of a small number of genes - the Yamanaka factors. When applied to old cells, this process has been shown to produce numerous beneficial effects along the way. In cells from old tissues it resets many of the epigenetic changes characteristic of aging, and restores mitochondrial function, ...
Source: Fight Aging! - Category: Research Authors: Tags: Newsletters Source Type: blogs