Systematic profiling of staralog response to acquired drug resistant kinase gatekeeper mutations in targeted cancer therapy.

Systematic profiling of staralog response to acquired drug resistant kinase gatekeeper mutations in targeted cancer therapy. Amino Acids. 2020 Mar 23;: Authors: Yang Y, Qiu Y, Liu X, Liu Y, Yin Y, Li P Abstract Kinase-targeted therapy has been widely used as a lifesaving strategy for cancer patients. However, many patients treated with targeted cancer drugs are clinically observed to rapidly develop acquired resistance. Kinase gatekeeper mutation is one of the most chief factors contributing to the resistance, which modulates the accessibility of kinase's ATP-binding pocket. Previously, the pan-kinase inhibitor Staurosporine and its analogs (termed as Staralogs) have been reported to exhibit wild-type sparing selectivity for some kinase gatekeeper mutants, such as EGFR T790M, Her2 T798M and cSrc T338M. Here, we describe an integrative approach to systematically profile the molecular response of 15 representative Staralogs to 17 kinase gatekeeper mutations in targeted cancer therapy. With the profile we are able to divide gatekeeper mutations into three classes (i.e. classes I, II and III) and to divide Staralogs into two groups (i.e. groups 1 and 2) using heuristic clustering. The class I and II mutations confer consistent sensitivity and resistance for all Staralogs, respectively, while the class III mutations address divergent effects on different Staralogs. The mutations to Ile residue can generally reduce Staralog affinity by ind...
Source: Amino Acids - Category: Biochemistry Authors: Tags: Amino Acids Source Type: research