Seminal quality in the first fraction of ejaculate.

Seminal quality in the first fraction of ejaculate. Syst Biol Reprod Med. 2014 Dec 30;:1-4 Authors: Hebles M, Dorado M, Gallardo M, González-Martínez M, Sánchez-Martín P Abstract Abstract Semen samples from 40 patients were collected in consecutive fractions. The variability in semen quality of each fraction was then determined. The first ejaculated fraction (FEF) primarily contained prostatic secretions, while the second ejaculate fraction (SEF) held the majority of the spermatozoa suspended in the secretions from the seminal vesicle. Differences in sperm quality were observed when the FEF was compared to the SEF and the total ejaculate fraction (TEF). These included the seminal parameters (volume, sperm concentration, motility) and sperm DNA fragmentation (SDF). When compared to TEF and SEF, the FEF presented a lower volume, higher sperm concentration, higher motility rates, and lower SDF. The data suggest that the first fraction renders an improved subpopulation of spermatozoa, with lower SDF. Spermatozoa from this fraction and hence their use for ART may have a positive effect on fertilization and embryo development. PMID: 25547665 [PubMed - as supplied by publisher]
Source: Systems Biology in Reproductive Medicine - Category: Reproduction Medicine Authors: Tags: Syst Biol Reprod Med Source Type: research

Related Links:

Publication date: Available online 25 February 2020Source: MitochondrionAuthor(s): Viraj Muthye, Dennis V. Lavrov
Source: Mitochondrion - Category: Biochemistry Source Type: research
Publication date: Available online 24 February 2020Source: MitochondrionAuthor(s): Deepika Kundu, Ritu Pasrija
Source: Mitochondrion - Category: Biochemistry Source Type: research
Publication date: Available online 24 February 2020Source: Microvascular ResearchAuthor(s): A. Alper Öztürk, İrem Namlı, Kadri Güleç, H. Tuba Kıyan
Source: Microvascular Research - Category: Biochemistry Source Type: research
Publication date: Available online 25 February 2020Source: Polymer TestingAuthor(s): Cijun Shuai, Xun Yuan, Wenjing Yang, Shuping Peng, Chongxian He, Pei Feng, Fangwei Qi, Guoyong Wang
Source: Polymer Testing - Category: Chemistry Source Type: research
Publication date: Available online 25 February 2020Source: Polymer TestingAuthor(s): Sattaiah Naidu K, Abhijeet S. Kate, Vikas Kshirsagar, R. Ganeshan, Tukaram Gunale, Bing Zhou, Samir Anapat, Yusuf Sulub, Arun Kumar, Narayana Rao
Source: Polymer Testing - Category: Chemistry Source Type: research
Publication date: April 2020Source: Phytochemistry Letters, Volume 36Author(s): Zeynep Dogan, Kan’ichiro Ishiuchi, Toshiaki Makino, Iclal Saracoglu
Source: Phytochemistry Letters - Category: Chemistry Source Type: research
Publication date: Available online 24 February 2020Source: Computational and Theoretical ChemistryAuthor(s): F. Paularokiadoss, A. Sekar, Thayalaraj Christopher Jeyakumar
Source: Computational and Theoretical Chemistry - Category: Chemistry Source Type: research
Soft Matter, 2020, Advance Article DOI: 10.1039/C9SM02494H, PaperGhazi Ben Messaoud, Patrick Le Griel, Daniel Hermida-Merino, Niki Baccile The structure-properties relationship of lipid lamellar hydrogels composed of a biobased microbial glucolipid biosurfactant is studied against pH, temperature and shear rate usingin situ rheo-SAXS experiments. To cite this article before page numbers are assigned, use the DOI form of citation above. The content of this RSS Feed (c) The Royal Society of Chemistry
Source: RSC - Soft Matter latest articles - Category: Chemistry Authors: Source Type: research
Soft Matter, 2020, Accepted Manuscript DOI: 10.1039/D0SM00001A, Review ArticleCharles E Sing, Sarah L Perry Complex coacervation is an associative, liquid-liquid phase separation that can occur in solutions of oppositely-charged macromolecular species, such as proteins, polymers, and colloids. This process results in a coacervate phase,... The content of this RSS Feed (c) The Royal Society of Chemistry
Source: RSC - Soft Matter latest articles - Category: Chemistry Authors: Source Type: research
Phys. Chem. Chem. Phys., 2020, Accepted Manuscript DOI: 10.1039/C9CP05699H, PaperMeng-Meng Wang, Yan-Xia Zhao, Xun-Lei Ding, Wei Li, Sheng-Gui He The ability of transition metals to activate methane is quite different, and it is attractive to find the most suitable metal for the direct conversion of methane to value-added chemicals.... The content of this RSS Feed (c) The Royal Society of Chemistry
Source: RSC - Phys. Chem. Chem. Phys. latest articles - Category: Chemistry Authors: Source Type: research
More News: Biology | Reproduction Medicine