Bio-inspired dimensionality reduction for Parkinson ’s disease (PD) classification

AbstractGiven the demand for developing the efficient Machine Learning (ML) classification models for healthcare data, and the potentiality of Bio-Inspired Optimization (BIO) algorithms to tackle the problem of high dimensional data, we investigate the range of ML classification models trained with the optimal subset of features of PD data set for efficient PD classification. We used two BIO algorithms, Genetic Algorithm (GA) and Binary Particle Swarm Optimization (BPSO), to determine the optimal subset of features of PD data set. The data set chosen for investigation comprises 756 observations (rows or records) taken over 755 attributes (columns or dimensions or features) from 252 PD patients. We employed MaxAbsolute feature scaling method to normalize the data and one hold cross-validation method to avoid biased results. Accordingly, the data is split in to training and testing set in the ratio of 70% and 30%. Subsequently, we employed GA and BPSO algorithms separately on 11 ML classifiers (Logistic Regression (LR), linear Support Vector Machine (lSVM), radial basis function Support Vector Machine (rSVM), Gaussian Na ïve Bayes (GNB), Gaussian Process Classifier (GPC), k-Nearest Neighbor (kNN), Decision Tree (DT), Random Forest (RF), Multilayer Perceptron (MLP), Ada Boost (AB) and Quadratic Discriminant Analysis (QDA)), to determine the optimal subset of features (reduction of dimensionality) contributing to the highest classification accuracy. Among all the bio-inspired ML...
Source: Health Information Science and Systems - Category: Information Technology Source Type: research