MiR-324-5p/PTPRD/CEBPD axis promotes papillary thyroid carcinoma progression via microenvironment alteration.

In this study, we investigated the interaction between miR-324-5p/PTPRD/CEBPD axis and tumor microenvironment in PTC progression. K1 and KTC-1 were transfected by lenti-CEBPD or CEBPD-sh vectors. Supernatant from different groups was harvested and added into culture media of human macrophages and HUVEC. Cell viability, colony formation, invasive and migrated cell number, and gap closure rate were elevated in lenti-CEBPD group. Compared with the control, supernatant from lenti-CEBPD group contained more abundant levels of VEGF and IL-4/IL-13, which, respectively, induced higher HUVEC invasion/migration rates and more obvious M2 marker (CD206) and genes (PPAR-γ and MRC-1) expression in macrophages. By means of luciferase reporter assay and gene manipulation, we identified that CEBPD was negatively regulated in PTC by protein tyrosine phosphatase receptor delta (PTPRD) which was the target of miR-324-5p. CEBPD-shRNA was also proved to reverse the effect of PTPRD-sh1 or miR-324-5p mimic on IL-4/IL-13 expression and HUVEC invasion. These results suggested that miR-324-5p/PTPRD/CEBPD axis was involved in the progression of PTC by inducing HUVEC invasion/migration and macrophage M2 polarization via VEGF and IL4/IL13, respectively. PMID: 32151175 [PubMed - as supplied by publisher]
Source: Cancer Biology and Therapy - Category: Cancer & Oncology Authors: Tags: Cancer Biol Ther Source Type: research