Preventing Oligomerization of β-arrestin-2 Improves Clearance of Tau via Autophagy

In today's research materials, scientists report on the discovery of a maladaptive response to the presence of tau aggregates in brain cells, one that makes the situation worse than it would otherwise be. Tau is one of a small number of proteins that can become altered in a way that ensures other molecules of the same protein also alter. They join together and precipitate into solid structures, known as neurofibrillary tangles in the case of tau, accompanied by a halo of disrupted biochemistry that is harmful to cell and tissue function. This spreads, seeding dysfunction as it moves from cell to cell, or throughout a tissue between cells. Cells do attempt to fight back against the spread of broken proteins and their aggregates. Multiple mechanisms allow cells to ingest and break down aggregates present between cells, and aggregates inside cells are also fed into the same recycling machinery. It is perhaps the case that neurodegenerative conditions are age-related in large part because the machinery of autophagy, an important recycling mechanism in cells, degrades with age. The efforts to reduce molecular waste such as protein aggregates falter. Here, researchers have found that an oligomerized form of β-arrestin-2 acts to interfere with the processes of autophagy as they attempt to remove aggregated tau protein. Normally cells recycle unwanted protein machinery and damaged structures by delivering these materials to a lysosome to be broken down, but an importan...
Source: Fight Aging! - Category: Research Authors: Tags: Medicine, Biotech, Research Source Type: blogs