Aldehyde dehydrogenase 2 protects cardiomyocytes against lipotoxicity via the AKT/glycogen synthase kinase 3 beta pathways.

Aldehyde dehydrogenase 2 protects cardiomyocytes against lipotoxicity via the AKT/glycogen synthase kinase 3 beta pathways. Biochem Biophys Res Commun. 2020 Feb 20;: Authors: Zhao L, Fu K, Li X, Zhang R, Wang W, Xu F, Ji X, Chen Y, Li C Abstract Aldehyde dehydrogenase 2, a mitochondrial matrix enzyme, plays a crucial role in protecting the heart against stress, such as ischemia reperfusion and alcohol injury. The present study aimed to investigate the effect of aldehyde dehydrogenase 2 on lipotoxic cardiomyopathy and to explore the possible mechanisms in vitro. Primary cardiomyocytes in the lipotoxic group were treated with oxidatively modified low-density lipoprotein (50 mg/L) for 24 h. Overexpression of aldehyde dehydrogenase 2 was achieved using the aldehyde dehydrogenase 2 activator, Alda-1 (20 μM). We found that cardiomyocyte apoptosis was attenuated by aldehyde dehydrogenase 2 overexpression. In addition, aldehyde dehydrogenase 2 overexpression inhibited the expression of BCL2 associated X, apoptosis regulator (BAX) and caspase 3, while it enhanced protein kinase B (AKT) and glycogen synthase kinase 3 beta (GSK-3β) phosphorylation. The results suggested that aldehyde dehydrogenase 2 is cardioprotective against lipotoxic cardiomyopathy, probably by reducing apoptosis through the AKT/glycogen synthase kinase 3 beta (GSK-3β) pathway. Our findings partially revealed the molecular mechanism of aldehyde dehydrogenase 2's cardi...
Source: Biochemical and Biophysical Research communications - Category: Biochemistry Authors: Tags: Biochem Biophys Res Commun Source Type: research