AMPK activation does not enhance autophagy in neurons in contrast to MTORC1 inhibition: different impact on β-amyloid clearance.

AMPK activation does not enhance autophagy in neurons in contrast to MTORC1 inhibition: different impact on β-amyloid clearance. Autophagy. 2020 Feb 20;:1-16 Authors: Benito-Cuesta I, Ordóñez-Gutiérrez L, Wandosell F Abstract The physiological AKT-MTORC1 and AMPK signaling pathways are considered key nodes in the regulation of anabolism-catabolism, and particularly of macroautophagy/autophagy. Indeed, it is reported that these are altered processes in neurodegenerative proteinopathies such as Alzheimer disease (AD), mainly characterized by deposits of β-amyloid (Aβ) and hyperphosphorylated MAPT. These accumulations disrupt the optimal neuronal proteostasis, and hence, the recovery/enhancement of autophagy has been proposed as a therapeutic approach against these proteinopathies. The purpose of the present study was to characterize the modulation of autophagy by MTORC1 and AMPK signaling pathways in the highly specialized neurons, as well as their repercussions on Aβ production. Using a double transgenic mice model of AD, we demonstrated that MTORC1 inhibition, either in vivo or ex vivo (primary neuronal cultures), was able to reduce amyloid secretion through moderate autophagy induction in neurons. The pharmacological prevention of autophagy in neurons augmented the Aβ secretion and reversed the effect of rapamycin, confirming the anti-amyloidogenic effects of autophagy in neurons. Inhibition of AMPK with compound C generated...
Source: Autophagy - Category: Cytology Authors: Tags: Autophagy Source Type: research