Flow fluorometry quantification of anion channel VRAC subunit LRRC8A at the membrane of living U937 cells.

Flow fluorometry quantification of anion channel VRAC subunit LRRC8A at the membrane of living U937 cells. Channels (Austin). 2020 Dec;14(1):45-52 Authors: Yurinskaya V, Aksenov N, Moshkov A, Goryachaya T, Shemery A, Vereninov A Abstract Assessing the expression of channels on the cell membrane is a necessary step in studying the functioning of ion channels in living cells. We explore, first, if endogenous VRAC can be assayed using flow cytometry and a commercially available antibody against an extracellular loop of the LRRC8A, also known as SWELL1, subunit of the VRAC channel. The second goal is to determine if an increase in the number of VRAC channels at the cell membrane is responsible for an increase in chloride permeability of the membrane in two well-known cases: during staurosporine (STS)-induced apoptosis and after water balance disturbance caused by hypotonic medium. Human suspension lymphoid cells U937 were used as they are suitable for flow fluorometry and because we have recently studied their membrane chloride permeability during apoptosis. We found that surface expression of endogenous LRRC8A subunits can be quantified in living U937 cells using flow fluorometry with the Alomone Lab antibody. Further, we revealed that treatment of cells for 1 hour using STS or a hypotonic solution did not change the number of LRRC8A subunits to the extent that would correspond to changes in the membrane chloride permeability determined...
Source: Channels - Category: Molecular Biology Tags: Channels (Austin) Source Type: research