The cold shock family gene cspD3 is involved in the pathogenicity of Ralstonia solanacearum CQPS-1 to tobacco

Publication date: Available online 20 February 2020Source: Microbial PathogenesisAuthor(s): Ying Liu, Xi Tan, Haojin Cheng, Jie Gong, Yong Zhang, Daibin Wang, Wei DingAbstractCold shock proteins (Csps) are small and highly conserved proteins that have target RNA- and DNA-binding activities. Csps play roles in different cellular processes and show functional redundancy. Ralstonia solanacearum, the agent of bacterial wilt, has 4 or 5 Csps based on genome analysis. However, the functions of all Csps in R. solanacearum remain unclear. According to phylogenetic analysis, the Csps from R. solanacearum are clustered into a group with CspD from E. coli. Here, we studied the role of CspD3, which was closer to CspD of E. coli in the phylogenetic tree. A cspD3 deletion strain was constructed to assess its effect on the phenotype of R. solanacearum, including growth, biofilm formation, motility, and virulence. The results showed that cspD3 of R. solanacearum was not necessary for normal growth, cold-shock adaptation, or biofilm formation. However, deletion of cspD3 in R. solanacearum CQPS-1 led to increased swimming motility, and the mean diameters of swimming haloes produced by the ΔcspD3 mutant were 1.3-fold larger than those produced by wild-type strain and 1.2-fold larger than those produced by the complemented strain. More importantly, the virulence of the cspD3 deletion mutant on susceptible tobacco plants was significantly attenuated compared to the wild-type strain. At 20 days a...
Source: Microbial Pathogenesis - Category: Infectious Diseases Source Type: research