Clearing or subverting the enemy: Role of autophagy in protozoan infections

Publication date: Available online 20 February 2020Source: Life SciencesAuthor(s): George Ghartey-Kwansah, Benjamin Aboagye, Frank Adu-Nti, Yeboah Kwaku Opoku, Emmanuel Kwasi AbuAbstractThe protozoan parasites are evolutionarily divergent, unicellular eukaryotic pathogens representing one of the essential sources of parasitic diseases. These parasites significantly affect the economy and cause public health burdens globally. Protozoan parasites share many cellular features and pathways with their respective host cells. This includes autophagy, a process responsible for self-degradation of the cell's components. There is conservation of the central structural and functional machinery for autophagy in most of the eukaryotic phyla, however, Plasmodium and Toxoplasma possess a decreased number of recognizable autophagy-related proteins (ATG). Plasmodium noticeably lacks clear orthologs of the initiating kinase ATG1/ULK1/2, and both Plasmodium and Toxoplasma lack proteins involved in the nucleation of autophagosomes. These organisms have essential apicoplast, a plastid-like non-photosynthetic organelle, which is an adaptation that is used in penetrating the host cell. Furthermore, available evidence suggests that Leishmania, an intracellular protozoan parasite, induces autophagy in macrophages. The autophagic pathway in Trypanosoma cruzi is activated during metacyclogenesis, a process responsible for the infective forms of parasites. Therefore, numerous pathogens have developed st...
Source: Life Sciences - Category: Biology Source Type: research