Crystallization tendency of APIs possessing different thermal and glass related properties in amorphous solid dispersions

Publication date: Available online 15 February 2020Source: International Journal of PharmaceuticsAuthor(s): Afroditi Kapourani, Elisavet Vardaka, Konstantinos Katopodis, Kyriakos Kachrimanis, Panagiotis BarmpalexisAbstractThe correlation between glass forming ability (GFA) and several thermophysical or physicochemical properties of APIs with the formation and the physical stability of amorphous solid dispersions (ASDs) was evaluated in the present study. Eight poorly water-soluble APIs belonging in different GFA classes (i.e. a) GFA Class I: Carbamazepine, CBZ, b) GFA Class II: Agomelatine, AGO, Aprepitant, APT, Rivaroxaban, RIV, and c) GFA Class III: Indomethacin, IND, Pioglitazone, PIO, Piroxixam, PIR, and Simvastatin, SIM) were tested, in addition to six commonly used matrix-carriers (namely povidone, PVP, hydroxypropyl cellulose, HPMC, copovidone, coPVP, Soluplus®, SOL, and gelatin) in order to prepared ASDs via film casting approach. Results using polarized light microscopy (PLM) showed a similar drug crystallization tendency from ASDs independently of their GFA classification, glass stability or glass fragility. X-ray diffraction analysis verified the formation and the physical stability of ASD (independently of GFA class) when a suitable matrix-carrier was selected (i.e. SOL for AGO, RIV and SIM, PVP for APT, CBZ and IND, coPVP for PIO and gelatin for PIR). Further attempts to correlate some physicochemical properties (i.e. component’s binding affinity and miscibili...
Source: International Journal of Pharmaceutics - Category: Drugs & Pharmacology Source Type: research