Antimicrobial activity of bioactive glass S53P4 against representative microorganisms causing osteomyelitis - Real-time assessment by isothermal microcalorimetry.

Antimicrobial activity of bioactive glass S53P4 against representative microorganisms causing osteomyelitis - Real-time assessment by isothermal microcalorimetry. Colloids Surf B Biointerfaces. 2020 Feb 07;189:110853 Authors: Gonzalez Moreno M, Butini ME, Maiolo EM, Sessa L, Trampuz A Abstract Bioactive glass (BAG) is a synthetic bone substitute with intrinsic antimicrobial properties, used for bone defect filling. We evaluated the antimicrobial activity of two formulations of BAG S53P4 against representative pathogens of osteomyelitis: Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecalis, Escherichia coli and Candida albicans. Antimicrobial activity of BAG S53P4 was assessed by isothermal microcalorimetry, a highly sensitive assay measuring metabolic-related microbial heat production in real-time. Standard CFUs-counting was performed in parallel. BAG granules (diameter 500-800 μm) and powder (<45 μm) were evaluated in two concentrations (400 and 800 mg/ml). Isothermal microcalorimetry was performed in glass ampoules containing growth medium, BAG and test microorganism, heat production was measured for 24 h. BAG S53P4 inhibited heat production of most-tested microorganisms with heat reduction of 60%-98% compared to positive control after 24 h of exposure to the highest-tested concentration (800 mg/ml). BAG S53P4 in powder formulation (<45 μm) inhibited more microbial growth than in granule formulation (50...
Source: Colloids and Surfaces - Category: Biotechnology Authors: Tags: Colloids Surf B Biointerfaces Source Type: research