AQP1 suppression by ATF4 triggers trabecular meshwork tissue remodelling in ET-1-induced POAG.

AQP1 suppression by ATF4 triggers trabecular meshwork tissue remodelling in ET-1-induced POAG. J Cell Mol Med. 2020 Feb 13;: Authors: Zhao Y, Zhu H, Yang Y, Ye Y, Yao Y, Huang X, Zhang Y, Shu X, Chen X, Yang Y, Ma J, Cheng L, Wang X, Ying Y Abstract Primary open-angle glaucoma (POAG) is the second leading cause of irreversible blindness worldwide. Increased endothelin-1 (ET-1) has been observed in aqueous humour (AH) of POAG patients, resulting in an increase in the out-flow resistance of the AH. However, the underlining mechanisms remain elusive. Using established in vivo and in vitro POAG models, we demonstrated that water channel Aquaporin 1 (AQP1) is down-regulated in trabecular meshwork (TM) cells upon ET-1 exposure, which causes a series of glaucomatous changes, including actin fibre reorganization, collagen production, extracellular matrix deposition and contractility alteration of TM cells. Ectopic expression of AQP1 can reverse ET-1-induced TM tissue remodelling, which requires the presence of β-catenin. More importantly, we found that ET-1-induced AQP1 suppression is mediated by ATF4, a transcription factor of the unfolded protein response, which binds to the promoter of AQP1 and negatively regulates AQP1 transcription. Thus, we discovered a novel function of ATF4 in controlling the process of TM remodelling in ET-1-induced POAG through transcription suppression of AQP1. Our findings also detail a novel pathological mecha...
Source: J Cell Mol Med - Category: Molecular Biology Authors: Tags: J Cell Mol Med Source Type: research