Reduced repressive epigenetic marks, increased DNA damage and Alzheimer's disease hallmarks in the brain of humans and mice exposed to particulate urban air pollution.

Reduced repressive epigenetic marks, increased DNA damage and Alzheimer's disease hallmarks in the brain of humans and mice exposed to particulate urban air pollution. Environ Res. 2020 Feb 04;183:109226 Authors: Calderón-Garcidueñas L, Herrera-Soto A, Jury N, Maher BA, González-Maciel A, Reynoso-Robles R, Ruiz-Rudolph P, van Zundert B, Varela-Nallar L Abstract Exposure to air pollutants is associated with an increased risk of developing Alzheimer's disease (AD). AD pathological hallmarks and cognitive deficits are documented in children and young adults in polluted cities (e.g. Metropolitan Mexico City, MMC). Iron-rich combustion- and friction-derived nanoparticles (CFDNPs) that are abundantly present in airborne particulate matter pollution have been detected in abundance in the brains of young urbanites. Epigenetic gene regulation has emerged as a candidate mechanism linking exposure to air pollution and brain diseases. A global decrease of the repressive histone post-translational modifications (HPTMs) H3K9me2 and H3K9me3 (H3K9me2/me3) has been described both in AD patients and animal models. Here, we evaluated nuclear levels of H3K9me2/me3 and the DNA double-strand-break marker γ-H2AX by immunostaining in post-mortem prefrontal white matter samples from 23 young adults (age 29 ± 6 years) who resided in MMC (n = 13) versus low-pollution areas (n = 10). Lower H3K9me2/me3 and higher γ-H2A.X staining were present in MMC ...
Source: Environmental Research - Category: Environmental Health Authors: Tags: Environ Res Source Type: research