Highly Linear Phase-Canceling Self-Injection-Locked Ultrasonic Radar for Non-Contact Monitoring of Respiration and Heartbeat

A novel phase-canceling demodulation scheme to improve the linearity of a self-injection-locked (SIL) ultrasonic radar is proposed with the goal of solving the null detection problem and accurately sensing large displacements of a moving target. A proportional-integral (PI) controller regulates the phase of the injection signal and cancels the Doppler phase shift by tuning a delay in the received echo signal, and this tunable delay serves as the radar output, which is linearly proportional to the displacement of the target. Without assuming weak injection, the frequency and phase equations for an SIL oscillator are derived, supporting the construction of a plant model and the design of a PI controller. Also, a new ultrasonic radar equation is presented for estimating the radar detection range. The SIL radar with phase regulation is operated in its anti-phase injection mode for better performance. The proposed design is implemented on an FPGA to make a 40 kHz continuous-wave ultrasonic radar. The maximum detectable peak-to-peak motion is up to 120 mm (approximately 14 wavelengths of displacement), with a total harmonic distortion as low as 2.3% for the detection of 1 Hz harmonic motion. The radar is used to detect the human chest movement for non-contact monitoring of the respiratory rate and heart rate. Due to the high linearity and sensitivity, the radar is capable of faithfully detecting the relatively large involuntary body movements and lung movements...
Source: IEEE Transactions on Biomedical Circuits and Systems - Category: Biomedical Engineering Source Type: research