Methionine increases yolk production to offset the negative effect of caloric restriction on reproduction without affecting longevity in C. elegans.

In this study, by using several CR strategies in C. elegans, we examine key functions of reproduction including embryonic development and larvae growth. We find that CR significantly decreases the survival of embryos and slows the growth of the offspring. We further determine that defect in oocyte but not sperm is responsible for the compromised reproduction under CR. Interestingly, adding methionine to the medium reverses the reproduction defects, but does not affect the long lifespan resulted from CR. The beneficial effect of methionine on reproduction requires the yolk protein vitellogenin. CR down-regulates vitellogenin expression, which can be reversed by supplementing methionine in the food. Lacking the yolk protein transport due to rme-2 mutation blocks methionine's beneficial effects. Our study has revealed a novel, methionine-mediated genetic pathway linking nutrient sensing to reproduction and suggested methionine as a potential food supplement to mitigate the side effect of CR. PMID: 32028263 [PubMed - as supplied by publisher]
Source: Aging - Category: Biomedical Science Authors: Tags: Aging (Albany NY) Source Type: research