Drosophila Xrcc2 regulates DNA double-strand repair in somatic cells.

Drosophila Xrcc2 regulates DNA double-strand repair in somatic cells. DNA Repair (Amst). 2020 Jan 23;88:102807 Authors: Bayer FE, Deichsel S, Mahl P, Nagel AC Abstract Genomic integrity is challenged by endo- and exogenous assaults that are combated by highly conserved DNA repair mechanisms. Repair of DNA double-strand breaks (DSBs) is of particular importance, as DSBs inflict chromosome breaks that are the basis of genomic instability. High fidelity recombination repair of DSBs relies on the Rad51 recombinase, aided by several Rad51 paralogs. Despite their significant contribution to DSB repair, the individual roles for Rad51 paralogs are incompletely understood. Drosophila serves as a metazoan model for DNA damage repair at the organismal level. Yet, only two out of four Rad51 paralogs have been studied so far and both are restricted to meiotic recombination repair. Using CRISPR/Cas9 technology, we have generated the first X-ray repair cross complementing 2 (xrcc2) null mutant in Drosophila. Like any other Drosophila Rad51 homologue, loss of xrcc2 does not affect fly development. We found that Drosophila xrcc2 - despite a specific expression in ovaries - is not essential for meiotic DSB repair, but supports the process. In contrast, xrcc2 is required for mitotic DNA damage repair: the mutants are highly sensitive towards various genotoxic stressors, including ionizing radiation, which significantly increase mortality. Moreover, los...
Source: DNA Repair - Category: Genetics & Stem Cells Authors: Tags: DNA Repair (Amst) Source Type: research