Comparing biochar- and bentonite-supported Fe-based catalysts for selective degradation of antibiotics: Mechanisms and pathway.

Comparing biochar- and bentonite-supported Fe-based catalysts for selective degradation of antibiotics: Mechanisms and pathway. Environ Res. 2020 Jan 22;183:109156 Authors: Li Z, Sun Y, Yang Y, Han Y, Wang T, Chen J, Tsang DCW Abstract The selective degradation of recalcitrant antibiotics into byproducts with low toxicity and high biodegradability has been increasingly popular using peroxymonosulfate (PMS) based advanced oxidation processes (AOPs). In this paper, two Fe-based heterogeneous catalysts, bentonite supported Fe-Ni composite (BNF) and biochar-supported Fe composite (Fe/C), were tailored and comprehensively characterized for distinctive physicochemical properties, crystalline structures, and interfacial behaviors. Two widely used antibiotics, sulfapyridine (SPY) and oxytetracycline (OTCs) at their common concentrations in pharmaceutical wastewaters (250 and 10 mg L-1) were tested for degradation in three PMS-based oxidation processes, i.e., PMS, PMS-BNF, and PMS-Fe/C, respectively. Results demonstrated that a large amount of PMS (10 and 1 mM) could effectively remove SPY (0.385 min-1, 100% removal) and OTC (2.737 min-1, 100% removal) via1O2 derived from PMS self-decomposition and non-radical pathway, respectively. Additional Fe-based catalysts (0.5 g L-1 Fe/C and BNF) significantly reduced the PMS consumption (1 and 0.25 mM) and accelerated the reaction rate (1.08 and 5.05 min-1) of SPY and OTC removal. Moreover, the ...
Source: Environmental Research - Category: Environmental Health Authors: Tags: Environ Res Source Type: research