Crystal symmetry determination in electron diffraction using machine learning

Electron backscatter diffraction (EBSD) is one of the primary tools for crystal structure determination. However, this method requires human input to select potential phases for Hough-based or dictionary pattern matching and is not well suited for phase identification. Automated phase identification is the first step in making EBSD into a high-throughput technique. We used a machine learning–based approach and developed a general methodology for rapid and autonomous identification of the crystal symmetry from EBSD patterns. We evaluated our algorithm with diffraction patterns from materials outside the training set. The neural network assigned importance to the same symmetry features that a crystallographer would use for structure identification.
Source: ScienceNOW - Category: Science Authors: Tags: Materials Science, Techniques reports Source Type: news