Fibroblast growth factor 23 counters vitamin D metabolism and action in human mesenchymal stem cells

In this study, we tested the hypothesis that FGF23 inhibits vitamin D metabolism and action in hMSCs. hMSCs were isolated from discarded marrow during hip arthroplasty, including two subjects receiving hemodialysis and a series of 20 subjects (aged 49-83 years) with estimated glomerular filtration rate (eGFR) data. The direct in vitro effects of rhFGF23 on hMSCs were analyzed by RT-PCR, Western immunoblot, and biochemical assays. Ex vivo analyses showed positive correlations for both secreted and membrane-bound αKlotho gene expression in hMSCs with eGFR of the subjects from whom hMSCs were isolated. There was a downregulated constitutive expression of αKlotho, but not FGFR1 in hMSCs obtained from two hemodialysis subjects. In vitro, rhFGF23 countered vitamin D-stimulated osteoblast differentiation of hMSCs by reducing the vitamin D receptor, CYP27B1/1α-hydroxylase, biosynthesis of 1α,25(OH)2D3, and signaling through BMP-7. These data demonstrate that dysregulated vitamin D metabolism in hMSCs may contribute to impaired osteoblastogenesis and altered bone and mineral metabolism in CKD subjects due to elevated FGF23. This supports the importance of intracellular vitamin D metabolism in autocrine/paracrine regulation of osteoblast differentiation in hMSCs.
Source: The Journal of Steroid Biochemistry and Molecular Biology - Category: Biochemistry Source Type: research