Improving the in-vivo biological activity of Fingolimod loaded PHBV nanoparticles by using hydrophobically modified alginate.

Improving the in-vivo biological activity of Fingolimod loaded PHBV nanoparticles by using hydrophobically modified alginate. Drug Dev Ind Pharm. 2020 Jan 24;:1-26 Authors: Rezaie Shirmard L, Ghofrani M, Bahari Javan N, Bayrami S, Tavassoli A, Rezaie A, Amini M, Kebriaee-Zadeh A, Rouini MR, Dinarvand R, Rafiee-Tehrani M, Dorkoosh FA Abstract Uncontrolled distribution of nanoparticles (NPs) within the body can significantly decrease the efficiency of drug therapy and is considered among the main restrictions of NPs application. The aim of this study was to develop a depot combination delivery system (CDS) containing fingolimod loaded poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) NPs dispersed into a matrix of oleic acid-grafted-aminated alginate (OA-g-AAlg) to minimize the nonspecific biodistribution (BD) of PHBV NPs. OA-g-AAlg was synthesized in two step; First, Alg was aminated by using adipic dihydrazide (ADH). The degree of hyrazide group substitution of Alg was determined by trinitro-benzene-sulfonic acid (TNBS) assay. Second, OA was attached to AAlg through formation of an amide bond. Chemical structure of OA-g-AAlg was confirmed with FTIR and HNMR spectroscopy. Furthermore, rheological properties of OA-g-AAlg with different grafting ratios were evaluated. In-vitro release studies indicated that 47% of fingolimod was released from the CDS within 28 days. Blood and tissue samples were analyzed using liquid chromatography/t...
Source: Drug Development and Industrial Pharmacy - Category: Drugs & Pharmacology Tags: Drug Dev Ind Pharm Source Type: research