An insight into the mechanism of DNA damage response in plants- role of SUPPRESSOR OF GAMMA RESPONSE 1: an overview

Publication date: Available online 23 January 2020Source: Mutation Research/Fundamental and Molecular Mechanisms of MutagenesisAuthor(s): Kalyan Mahapatra, Sujit RoyAbstractBecause of their sessile lifestyle, plants are inescapably exposed to various kinds of environmental stresses throughout their lifetime. Therefore, to regulate their growth and development, plants constantly monitor the environmental signals and respond appropriately. However, these environmental stress factors, along with some endogenous metabolites, generated in response to environmental stress factors often induce various forms of DNA damage in plants and thus promote genome instability. To maintain the genomic integrity, plants have developed an extensive, sophisticated and coordinated cellular signaling mechanism known as DNA damage response or DDR. DDR evokes a signaling process which initiates with the sensing of DNA damage and followed by the subsequent activation of downstream pathways in many directions to repair and eliminate the harmful effects of DNA damages. SUPPRESSOR OF GAMMA RESPONSE 1 (SOG1), one of the newly identified components of DDR in plant genome, appears to play central role in this signaling network. SOG1 is a member of NAC [NO APICAL MERISTEM (NAM), ARABIDOPSIS TRANSCRIPTION ACTIVATION FACTOR (ATAF), CUP-SHAPED COTYLEDON (CUC)] domain family of transcription factors and involved in a diverse array of function in plants, encompassing transcriptional response to DNA damage, cell c...
Source: Mutation Research Fundamental and Molecular Mechanisms of Mutagenesis - Category: Cytology Source Type: research

Related Links:

Publication date: 18 February 2020Source: Cell Reports, Volume 30, Issue 7Author(s): Mu-Yan Cai, Connor E. Dunn, Wenxu Chen, Bose S. Kochupurakkal, Huy Nguyen, Lisa A. Moreau, Geoffrey I. Shapiro, Kalindi Parmar, David Kozono, Alan D. D’AndreaSummaryCells deficient in ataxia telangiectasia mutated (ATM) are hypersensitive to ionizing radiation and other anti-cancer agents that induce double-strand DNA breaks. ATM inhibitors may therefore sensitize cancer cells to these agents. Some cancers may also have underlying genetic defects predisposing them to an ATM inhibitor monotherapy response. We have conducted a genome-w...
Source: Cell Reports - Category: Cytology Source Type: research
In conclusion, a substantial proportion of TNBC respond to irinotecan. BRCAness, high SLFN11 expression, and RB1 loss are highly predictive of response to irinotecan and the clinical indenoisoquinoline TOP1 inhibitors.
Source: Science Translational Medicine - Category: Biomedical Science Authors: Tags: Research Articles Source Type: research
AbstractHuntington ’s disease (HD) is an autosomal-dominant neurodegenerative disorder caused by an increased and unstable CAG DNA expansion in theHuntingtin (HTT) gene, resulting in an elongated polyglutamine tract in huntingtin protein. Despite its monogenic cause, HD pathogenesis remains elusive and without any approved disease-modifying therapy as yet. A growing body of evidence highlights the emerging role of high-mobility group box 1 (HMGB1) protein in HD pathology. HMGB1, being a nuclear protein, is primarily implicated in DNA repair, but it can also translocate to the cytoplasm and participate into numerous c...
Source: Journal of Molecular Medicine - Category: Molecular Biology Source Type: research
Publication date: Available online 28 January 2020Source: Trends in GeneticsAuthor(s): Feras E. Machour, Nabieh AyoubDefective double-strand break (DSB) repair leads to genomic instabilities that may augment carcinogenesis. DSBs trigger transient transcriptional silencing in the vicinity of transcriptionally active genes through multilayered processes instigated by Ataxia telangiectasia mutated (ATM), DNA-dependent protein kinase (DNA-PK), and poly-(ADP-ribose) polymerase 1 (PARP1). Novel factors have been identified that ensure DSB-induced silencing via two distinct pathways: direct inhibition of RNA Polymerase II (Pol II...
Source: Trends in Genetics - Category: Genetics & Stem Cells Source Type: research
Abstract Defective double-strand break (DSB) repair leads to genomic instabilities that may augment carcinogenesis. DSBs trigger transient transcriptional silencing in the vicinity of transcriptionally active genes through multilayered processes instigated by Ataxia telangiectasia mutated (ATM), DNA-dependent protein kinase (DNA-PK), and poly-(ADP-ribose) polymerase 1 (PARP1). Novel factors have been identified that ensure DSB-induced silencing via two distinct pathways: direct inhibition of RNA Polymerase II (Pol II) mediated by negative elongation factor (NELF), and histone code editing by CDYL1 and histone deac...
Source: Trends in Genetics : TIG - Category: Genetics & Stem Cells Authors: Tags: Trends Genet Source Type: research
Fight Aging! publishes news and commentary relevant to the goal of ending all age-related disease, to be achieved by bringing the mechanisms of aging under the control of modern medicine. This weekly newsletter is sent to thousands of interested subscribers. To subscribe or unsubscribe from the newsletter, please visit: https://www.fightaging.org/newsletter/ Longevity Industry Consulting Services Reason, the founder of Fight Aging! and Repair Biotechnologies, offers strategic consulting services to investors, entrepreneurs, and others interested in the longevity industry and its complexities. To find out m...
Source: Fight Aging! - Category: Research Authors: Tags: Newsletters Source Type: blogs
The J.P. Morgan Healthcare conference runs every year in San Francisco, a big draw for the biotech industry, and many organizations take the opportunity to host events at the same time. Among these, the SENS Research Foundation has for the past few years hosted a pitch day in which biotech companies in the longevity industry, largely startups, present to that portion of the Bay Area investor community interested in funding the treatment of aging as a medical condition. I was there to present on progress at Repair Biotechnologies, and took some notes on the other companies as they talked about their work. Kimera Labs ...
Source: Fight Aging! - Category: Research Authors: Tags: Investment Source Type: blogs
rts Next-generation sequencing has led to the recent discovery of several novel pancreatic cancer susceptibility genes. These genes include ataxia telangiectasia mutated (ATM), a serine/threonine kinase that is an integral component of DNA repair. Pathogenic germline ATM variants are frequently identified in patients with pancreatic ductal adenocarcinoma (PDAC) with and without a family history of the disease. Loss of ATM is also a frequent somatic event in the development of PDAC. These discoveries have advanced our understanding of the genetic basis of pancreatic cancer risk and will impact patient care through appro...
Source: Genes - Category: Genetics & Stem Cells Authors: Tags: Review Source Type: research
In this report, we describe a 56 years old patient affected by AOA4 characterized by ataxia, polyneuropathy, oculomotor apraxia, and cognitive impairment with the absence of dystonia. The disease is characterized by a very late onset (50 years) when compared with other AOA4 patients described so far (median age of onset at 4 years). In this proband, Clinical Exome Analysis through Next Generation Sequencing (NGS) consisting of 4,800 genes, identified the PNKP homozygous mutation p.Gln50Glu. This variant, classified as a likely pathogenic variant according to American College of Medical Genetics (ACMG) guidelines, does not ...
Source: Frontiers in Neurology - Category: Neurology Source Type: research
Ataxia telangiectasia (AT) is a genetic condition caused by mutations involving ATM (Ataxia Telangiectasia Mutated). This gene is responsible for the expression of a DNA double stranded break repair kinase, the ATM protein kinase. The syndrome encompasses combined immunodeficiency and various degrees of neurological abnormalities and increased risk of malignancy. Typically, patients present early in life with delay in neurological milestones, but very infrequently, with life threatening infections typical of a profound T cell deficiency. It would therefore be unexpected to identify this condition immediately after birth us...
Source: Frontiers in Immunology - Category: Allergy & Immunology Source Type: research
More News: Ataxia | Cytology | Environmental Health | Gastroschisis Repair | Middle East Health | Soy | Study