Design of a Frequency Reconfigurable Broadband THz Antenna Based on the Vanadium Dioxide

AbstractIn this article, the design of a frequency reconfigurable broadband THz antenna based on vanadium dioxide (VO2) is investigated. Instead of being fed by the microstrip line directly, a windmill-shaped feeding structure is designed to provide a proximity-coupled feeding method. Many modes with contiguous resonant frequencies can be excited to obtain the wideband performance. The proposed antenna combines gold with metamaterial VO2. Thanks to insulator-metal phase transition characteristic of VO2 at phase transition temperature (68  °C), we can change the length of the resonant branches to realize frequency reconfiguration by changing the external temperature (T). The simulated results illustrate that whenT = 50 °C (State I), such an antenna has a bandwidth of 35.2% (7.01–10 THz) with S11 below − 10 dB, and a maximum gain of 6.62 dBic. WhenT = 80 °C (State II), it has a bandwidth of 21.8% (5.77–7.18 THz) with S11 below − 10 dB, and a maximum gain of 4.49 dBic. Thus, we realize a design of a proximity-coupled antenna with reconfigurable wideband over the THz band.
Source: Plasmonics - Category: Biomedical Science Source Type: research