Development and application of a LC–MS/MS assay for simultaneous analysis of 25-hydroxyvitamin-D and 3-epi-25-hydroxyvitamin-D metabolites in canine serum

We describe a simplified workflow utilising supported liquid extraction (SLE) without derivatization that provides good linearity (mean r> 0.996) and accuracy across a broad dynamic range of 4–500 nmol/L for D3 metabolites and 7.8–500 nmol/L for D2 metabolites. Upon application of this assay to 117 canine serum samples, 25(OH)D3 was detectable in all samples with a median concentration of 82.1 nmol/L (inter-quartile range (IQR) 59.7–101.8 nmol/L). 3-epi-25(OH)D3 could be detected in 87.2 % of the study population, with a median concentration of 5.2 nmol/L (2.4–8.1 nmol/L). However, 3-epi-25(OH)D3 was quantified below the LLOQ in 40.2 % of these samples. 3-epi-25(OH)D3 contributed on average 6.3 % to 25(OH)D3 status (contribution ranges from 0 to 23.8%) and a positive correlation was detected between 25(OH)D3 and 3-epi-25(OH)D3 concentrations. Free 25(OH)D was also measured using an immunoassay with a median concentration of 15.2 pmol/L (12.5–23.2 pmol/L), and this metabolite was also positively correlated to both 3-epi-25(OH)D3 and 25(OH)D3 concentrations. D2 metabolites were not detected in canine serum as expected. Vitamin D metabolite concentrations were variable between individuals, and research into the causes of this variation should include factors such as breed, age, sex and neuter status to determine the impact of genetic and hormonal factors. Given the clinical importance of vitamin D in dogs, and the immense potential for utilising this sp...
Source: The Journal of Steroid Biochemistry and Molecular Biology - Category: Biochemistry Source Type: research