N-doped Cu-MOFs for efficient electrochemical determination of dopamine and sulfanilamide

Publication date: Available online 21 January 2020Source: Journal of Hazardous MaterialsAuthor(s): Saisai Chen, Chaohai Wang, Ming Zhang, Wuxiang Zhang, Junwen Qi, Xiuyun Sun, Lianjun Wang, Jiansheng LiAbstractFast and efficient tracking of micropollutants in aquatic environment by developing novel electrode materials is of great significance. Herein, a polyvinylpyrrolidone (PVP) assisted strategy is applied for synthesis of nitrogen doped Cu MOFs (N-Cu-MOF) for micropollutants electrochemical detection. The designed N-Cu-MOFs possess uniform octahedral shape with large surface area (1184 m2g−1) and an average size of roughly 450 nm, exhibiting the excellent electroanalytical capability for the detection of multipollutants. In the case of dopamine (DA) and sulfonamides (SA) as typical microcontaminants, the designed N-Cu-MOFs exhibited wide linear ranges of 0.50 nM-1.78 mM and low detection limit (LOD, 0.15 nM, S/N = 3) for the determination of DA, as well as a linear range of 0.01-58.3 μM and LOD (0.003 μM, S/N = 3) for monitoring SA. The improved performance is attributed to the heteroatom introduction and good dispersion stability of N-Cu-MOF with PVP-decorated. The good electroanalytical ability of N-Cu-MOF for detection of DA and SA can provide a guide to efficient and rapid monitor other micropollutants and construct novel electrochemical sensors.Graphical Abstract
Source: Journal of Hazardous Materials - Category: Environmental Health Source Type: research