Inhibitions of human parainfluenza virus type 2 replication by ribavirin and mycophenolate mofetil are restored by guanosine and S-(4-nitrobenzyl)-6-thioinosine.

Inhibitions of human parainfluenza virus type 2 replication by ribavirin and mycophenolate mofetil are restored by guanosine and S-(4-nitrobenzyl)-6-thioinosine. Drug Discov Ther. 2019;13(6):314-321 Authors: Uematsu J, Sakai-Sugino K, Kihira-Nakanishi S, Yamamoto H, Hirai K, Kawano M, Nishio M, Tsurudome M, O'Brien M, Komada H Abstract The antiviral activities of a nucleoside analog antiviral drug (ribavirin) and a non-nucleoside drug (mycophenolate mofetil) against human parainfluenza virus type 2 (hPIV-2) were investigated, and the restoration of the inhibition by guanosine and S-(4-nitrobenzyl)-6-thioinosine (NBTI: equilibrative nucleoside transporter 1 inhibitor) were also investigated. Ribavirin (RBV) and mycophenolate mofetil (MMF) inhibited cell fusion induced by hPIV-2. Both RBV and MMF considerably reduced the number of viruses released from the cells. Virus genome synthesis was inhibited by RBV and MMF as determined by polymerase chain reaction (PCR) and real time PCR. mRNA syntheses were also reduced. An indirect immunofluorescence study showed that RBV and MMF largely inhibited viral protein syntheses. Using a recombinant green fluorescence protein (GFP)-expressing hPIV-2 without matrix protein (rhPIV-2ΔMGFP), it was found that virus entry into the cells and multinucleated giant cell formation were almost completely blocked by RBV and MMF. RBV and MMF did not disrupt actin microfilaments or microtubules. Both guanosine a...
Source: Drug Discoveries and Therapeutics - Category: Drugs & Pharmacology Tags: Drug Discov Ther Source Type: research