Biosynthesis and half-life of MBX-2168-triphosphate in herpes virus-infected cells

Publication date: Available online 20 January 2020Source: Antiviral ResearchAuthor(s): Hannah E. Sauer, Marie L. Nguyen, John D. Williams, Terry L. Bowlin, Brian G. GentryAbstractThe third generation of methylenecyclopropane nucleoside analogs (MCPNAs) elicit an anti-viral effect against all three sub-classes of herpes viruses without inducing cytotoxicity in vitro. It has been previously established that the mechanism of action of MCPNAs is similar to that of ganciclovir (GCV) or acyclovir (ACV). However, the activation of MBX-2168, a third generation MCPNA, involves additional and unique enzymatic steps and this process has not been examined in virus-infected cells. To that end, herpes virus-infected cells were incubated with MBX-2168, synguanol, GCV, or ACV. Incubation of HCMV-infected cells with five times the EC50 of MBX-2168 (4.0 μM), synguanol (10.5 μM), or GCV (25 μM) resulted in a time-dependent increase in triphosphate accumulation reaching a maximum of 48.1 ± 5.5, 45.5 ± 2.5, and 42.6 ± 3.7 pmol/106 cells at 120 h, respectively. Additionally, half-lives of these compounds were similar in HCMV-infected cells (GCV-TP = 25.5 ± 2.7 h; MBX-2168-TP/synguanol-TP = 23.0 ± 1.4 h). HSV-1-infected cells incubated with five times the EC50 of MBX-2168 (33.5 μM) or ACV (5.0 μM) demonstrated a time-dependent increase in triphosphate levels reaching a maximum of 12.3 ± 1.5 and 11.6 ± 0.7 pmol/106 cells at 24 h, ...
Source: Antiviral Therapy - Category: Virology Source Type: research